
 

 

Nat  Table 

 

This tutorial shows how to get started with Nebula NatTable. It shows how to get 

NatTable installed into the IDE and explains the basic concepts. It is also explained 

how to put data in a NatTable instance and how to create a NatTable with various 

compositions. 

• N(ot) a(nother) t(able)  

• Framework for building tables/grids/trees  

• Designed to handle large datasets  

• Provides a lot of functionality out of the box 

 

How we create a table using in TableViewer 

TableViewer viewer = new TableViewer(parent, SWT.BORDER|SWT.H_SCROLL|SWT.V_SCROLL); 

TableViewerColumn column = new TableViewerColumn(viewer, SWT.NONE); 

column.getColumn().setText("Firstname");  

column.getColumn().setWidth(100);  

column.setLabelProvider(new CellLabelProvider() { ... });  

column.setEditingSupport(new MyEditingSupport()); 

 

• Created column by column 

• Several objects for every column – Column object, LabelProvider, 

ContentProvider(EditingSupport) and setInput for tableViewer. 

 

Before going to start creating nattable we need to understand the architecture and layers of the 

NatTable  

 

If Nattable was not installed in your eclipse version,then you should download it from internet and 

install it into eclipse. 

A NatTable instance is typically build out of several layers. A layer is a rectangular region of cells and has 

methods to access columns, rows, width and height. All layers implement the ILayerinterface. Every 

basic feature is implemented in a layer and can be added to a NatTable instance by adding the layer to a 

layer stack or a layer composition. For example, to add the ability to select cells in a table you need to 

add the SelectionLayer. 

 



 

 

 
We have to add "org.eclipse.nebula.widgets.nattable.core" in dependency 

 

 

Example Code: 

 

 
 

• DataLayer – IDataProvider (e.g. ListDataProvider) 

• IColumnAccessor (e.g. ReflectiveColumnPropertyAccessor) 

• No JFace databinding support out of the box 

• GlazedLists support 

 

Working With Example 

 

In this section you will find some examples on how to use the NatTable. 

Creating a basic grid 

In this example we will create a basic grid that will show objects of type Contact. You will need to the 
follow these steps to setup the grid: 

• Assemble the Layer stacks depending on the features you wish to enable. Every region has 
a layer stack backing it. 

In this example we will create a grid with the following features enabled.  



 

 

• Reorder columns 

• Hide columns 

• Scrolling 

• Selection 

Plugging data 

The primary interface for providing data to NatTable is IDataProvider. The most common way of 

providing data to the table is to use a List data structure. This list contains an object for each row in 
the table. Each property of the row object is represented in a column. 

In this example we are using ecore model/domain mode named Contact to represent the data in a 
row. 

 

 

 

If you are using a List as your data structure, you can use the ListDataProvider out of the box. 

In this case our data provider will look like so 

 

The ReflectiveColumnPropertyAccessor uses standard java getter methods to read data 

from the row object. If you wish to fetch data from your row object in specific ways, you can plugin a 

custom IColumnPropertyAccessor here. 

 

Setting up the body region 

The data provider should be wrapped up by the DataLayer. The DataLayer is always the 

lowermost layer in the stack. It is responsible for providing data to the grid. 

 



 

 

 

 

Run the Application :  

 

 
 

 

ABOUT ANCIT: 

 

ANCIT Consulting is an Eclipse Consulting Firm located in the "Silicon Valley of 

Outsourcing", Bangalore. Offers professional Eclipse Support and Training for various 

Eclipse based Frameworks including RCP, EMF, GEF, GMF. Contact us on 

annamalai@ancitconsulting.com  to learn more about our services. 

 

mailto:annamalai@ancitconsulting.com

